1) Start CFD-GUI in the unstructured mode and read the grid.
Select Model --> Grid --> Import Grid --> DTF and read T2.DTF
Answer "Yes" when asked if the 2D model is axisymmetric
2) Select the Problem Type Options
Select Model --> Problem Type --> Options
Activate Compressible Flow, Heat Transfer, Reaction, Plasma, Electromagnetics
3) Read Additional Species Database
Select Model --> Prop. --> Species --> Read Additional Species
read ions.SPECIES file
4) Setup the Inlet and Initial Mixtures
Select Model --> Prop. --> Mixture Defn.
Add two mixtures:
Inlet: (CL2 1.)
Initial: (CL2 0.9999 CL2+ 0.0001)
5) Define the Gas Properties
Select Model --> Prop. --> Gas
Density = Ideal Gas Law (Ref. Pressure = 1.33 Pa)
Use default values for all other gas properties
6) Define the Solid Properties
Select Model --> Prop. --> Solid
Copper:
Conductivity = 386 W/m-K
Specific Heat = 385 J/kg-K
Density = 8900 kg/m3
Quartz
Conductivity = 200 W/m-K
Specific Heat = 200 J/kg-K
Density = 1000 kg/m3
Air:
Conductivity = 0.0242 W/m-K
Specific Heat = 1000 J/kg-K
Density = 1.15 kg/m3
Use default values for all other solid properties
7) Define the Gas Phase / Electron Induced Reactions
Select Model --> Models --> Reaction
Set Number of Steps to 9, Rate Constants by: General Rate
Step Number 1: CL2 --> CL2+
(Electron Induced Reaction, Energy Loss:0)
Forward Rate: Ap=2.84e-13, Ea/R=12.36 eV, n=0.766
Backwards Rate: General Rate, Ap=0 Ea/R=0, n=0
Step Number 2: CL2 --> CL- + CL
(Electron Induced Reaction, Energy Loss:0)
Forward Rate: Ap=4.31e-16, Ea/R=0.61 eV, n=0
Backwards Rate: General Rate, Ap=0 Ea/R=0, n=0
Step Number 3: CL- + CL2+ --> CL + CL2
Forward Rate: Ap=5e-14, Ea/R=0 eV, n=0
Backwards Rate: General Rate, Ap=0 Ea/R=0, n=0
Step Number 4: CL2 --> 2CL
(Electron Induced Reaction, Energy Loss:0)
Forward Rate: Ap=5.52e-14, Ea/R=5.49 eV, n=1.66
Backwards Rate: General Rate, Ap=0 Ea/R=0, n=0
Step Number 5: CL- --> CL
(Electron Induced Reaction, Energy Loss:0)
Forward Rate: Ap=3.28e-14, Ea/R=5.37 eV, n=0
Backwards Rate: General Rate, Ap=0 Ea/R=0, n=0
Step Number 6: CL --> CL+
(Electron Induced Reaction, Energy Loss:0)
Forward Rate: Ap=3e-14, Ea/R=13.21 eV, n=0.559
Backwards Rate: General Rate, Ap=0 Ea/R=0, n=0
Step Number 7: CL+ + CL- --> 2CL
Forward Rate: Ap=5e-14, Ea/R=0 eV, n=0
Backwards Rate: General Rate, Ap=0 Ea/R=0, n=0
Step Number 8: CL2 --> CL+ + CL
(Electron Induced Reaction, Energy Loss:0)
Forward Rate: Ap=3.88e-15, Ea/R=15.5 eV, n=0
Backwards Rate: General Rate, Ap=0 Ea/R=0, n=0
Step Number 9: CL2 --> CL+ + CL-
(Electron Induced Reaction, Energy Loss:0)
Forward Rate: Ap=1.07e-15, Ea/R=12.37 eV, n=0
Backwards Rate: General Rate, Ap=0 Ea/R=0, n=0
8) Define the Surface Reactions
Select Model -> Models --> Sur. Reaction
Surface Reactions: ON
Surface Mass Transfer: Sticking Coefficient Method
Add a Mechanism (name it "Chamber") with 3 steps
Step Number 1: CL2+ --> CL2
Ap=1, Ea/R=0, n=0, Transferred Species=None
Step Number 2: CL+ --> CL
Ap=1, Ea/R=0, n=0, Transferred Species=None
Step Number 3: 2CL --> CL2
Ap=0.8, Ea/R=0, n=0, Transferred Species=None
Add a Mechanism (name it "Window") with 3 steps
Step Number 1: CL2+ --> CL2
Ap=1, Ea/R=0, n=0, Transferred Species=None
Step Number 2: CL+ --> CL
Ap=1, Ea/R=0, n=0, Transferred Species=None
Step Number 3: 2CL --> CL2
Ap=0.02, Ea/R=0, n=0, Transferred Species=None
Add a Mechanism (name it "Wafer") with 3 steps
Step Number 1: CL2+ --> CL2
Ap=1, Ea/R=0, n=0, Transferred Species=None
Step Number 2: CL+ --> CL
Ap=1, Ea/R=0, n=0, Transferred Species=None
Step Number 3: 2CL --> CL2
Ap=0.02, Ea/R=0, n=0, Transferred Species=None
9a) Change the Window/Chamber INTERFACE BC's to MAT_INTF (4)
Select Model --> Bound. Cond. --> Surface BC --> Location
In Domain 6 pick the Window/Chamber INTERFACEs (2) and change to MAT_INTF
In Domain 8 pick the Window/Chamber INTERFACE (1) and change to MAT_INTF
In Domain 10 pick the Window/Chamber INTERFACE (1) and change to MAT_INTF
9b) Setup the Boundary Condition Values
Select Model --> Bound. Cond. --> Surface BC --> Values
(need pic)
Pick the Cyan colored outer case walls (8)
Isothermal (U=0, V=0, T=300)
Electron Temperature: Fixed Gradient dTe/dn=0
Vector Magnetic Potential: Fixed Potential A(Real)=0, A(Imag)=0
Reaction: Off
Middle-Mouse to complete the set
Pick the Cyan colored outer chamber walls (12)
Isothermal (U=0, V=0, T=300)
Electron Temperature: Fixed Gradient dTe/dn=0
Vector Magnetic Potential: Fixed Potential A(Real)=0, A(Imag)=0
Reaction: Chamber
Middle-Mouse to complete the set
Pick the Cyan colored wafer wall (1)
Isothermal (U=0, V=0, T=300)
Electron Temperature: Fixed Gradient dTe/dn=0
Vector Magnetic Potential: Fixed Potential A(Real)=0, A(Imag)=0
Reaction: Chamber
Middle-Mouse to complete the set
Pick the Beige colored Chamber/Window Material Interfaces
in Domains 8 and 10 (2)
Set the Reaction to "Window"
Middle-Mouse to complete the set
Pick the Yellow colored Inlet (1)
Fixed Velocity, Normal Vn=23 m/s, P=0 Pa, T=300 K
Electron Temperature: Fixed Gradient dTe/dn=0
Vector Magnetic Potential: Fixed Potential A(Real)=0, A(Imag)=0
Mixture: Inlet
Middle-Mouse to complete the set
Pick the Green colored Outlet (1)
Fixed Pressure, U=0 m/s, V=0 m/s, P=0 Pa, T=300 K
Electron Temperature: Fixed Gradient dTe/dn=0
Vector Magnetic Potential: Fixed Potential A(Real)=0, A(Imag)=0
Mixture: Inlet
Middle-Mouse to complete the set
10) Setup the Coil Current
Select Model --> Bound. Cond. --> Coil Current
Pick each of the five coils
Source Type: AC Source, Input: Coil Current
Field Frequency 1.356e7 Hz, Coil Current 25 A
Middle-Mouse to complete the set
11) Activate Slip Wall Boundary Conditions
Select Model --> Bound. Cond. --> Global BC Settings
Activate Velocity Slip with Accomodation Coefficient 0.9317
12) Setup the Initial Conditions
Select Model --> Initial Cond. --> Initial Cond
Set Constant Values
Mixture=Initial, U=0.01, V=0.01, P(rel)=0, T=300 K, Electron Temp = 3 eV
Mag. Potential (Real)=0, Mag. Potential (Imag)=0
Mixture: Initial
12) Set the number of Solution Iterations
Select Solve --> Control --> Iterations --> Solution 3000
13) Define the Solution Relaxation Parameters
Select Solve --> Control --> Relaxation
Change the following:
Enthalpy: 0.2
Species Fractions:1e-5
Plasma: 0.01
Electromagnetics: 0.001
Density: 0.6
Pressure: 0.6
Temperature: 1e-9
14) Request Desired Output
Select Solve --> Output --> Printed --> Mass Flow Summary --> Global
Select Solve --> Output --> Graphics (add any desired scalars)
For now we must skip step 15 and run from the command line, so save the
DTF file as T3.DTF and go to the command line "CFD-ACEUAT -dtf T3.DTF"
Modify the DTF file to turn off the Enthalpy equation
and modify the linear relaxations for species
DTF -ud T3.DTF<T3.in
You should see the following
SOLVE_HEAT
Updating
Old values (2 elements): 1 0
New values (2 elements): 0 0
RELAXATIONS_CHEM2
Updating
Old values (5 elements): 1 1 1 1 1
New values (5 elements): 1 1 0.005 0.005 0.005
RELAX_ELECTRON_DENSITY
Updating
Old values (1 elements): 0.1
New values (1 elements): 0.1
RELAX_DRIFT
Updating
Old values (1 elements): 0
New values (1 elements): 0
15) Submit the Job
Select Solve --> Solution --> Submit --> Submit the run (OK)
The solution should show the following:
max electron temperature of 2.47 eV
max electron number density of 8.67e16 1/m3
max Cl- number density 2.33e17 1/m3
max Cl2+ number density 2.42e17 1/m3
max Cl+ number density 7.61e16 1/m3
max RF electric field |E|rf 2000 V/m
Electron Energy Loss 186 W
Electron Absorbed Energy 186 W
RESULTS: Postprocess results with CFD-VIEW
Slide1 Slide2 Slide3 Slide4 Slide5 Slide6 Slide7 Slide8 Slide9