1) Start CFD-GUI in the unstructured mode and read the grid.

Select Model --> Grid --> Import Grid --> DTF and read T2.DTF

Answer "Yes" when asked if the 2D model is axisymmetric

2) Select the Problem Type Options

Select Model --> Problem Type --> Options

Activate Compressible Flow, Heat Transfer, Reaction, Plasma, Electromagnetics

3) Read Additional Species Database

Select Model --> Prop. --> Species --> Read Additional Species

read ions.SPECIES file

4) Setup the Inlet and Initial Mixtures

Select Model --> Prop. --> Mixture Defn.

Add two mixtures:

Inlet: (CL2 1.)

Initial: (CL2 0.9999 CL2+ 0.0001)

5) Define the Gas Properties

Select Model --> Prop. --> Gas

Density = Ideal Gas Law (Ref. Pressure = 1.33 Pa)

Use default values for all other gas properties

6) Define the Solid Properties

Select Model --> Prop. --> Solid

Copper:

Conductivity = 386 W/m-K

Specific Heat = 385 J/kg-K

Density = 8900 kg/m3

Quartz

Conductivity = 200 W/m-K

Specific Heat = 200 J/kg-K

Density = 1000 kg/m3

Air:

Conductivity = 0.0242 W/m-K

Specific Heat = 1000 J/kg-K

Density = 1.15 kg/m3

Use default values for all other solid properties

7) Define the Gas Phase / Electron Induced Reactions

Select Model --> Models --> Reaction

Set Number of Steps to 9, Rate Constants by: General Rate

Step Number 1: CL2 --> CL2+

(Electron Induced Reaction, Energy Loss:0)

Forward Rate: Ap=2.84e-13, Ea/R=12.36 eV, n=0.766

Backwards Rate: General Rate, Ap=0 Ea/R=0, n=0

Step Number 2: CL2 --> CL- + CL

(Electron Induced Reaction, Energy Loss:0)

Forward Rate: Ap=4.31e-16, Ea/R=0.61 eV, n=0

Backwards Rate: General Rate, Ap=0 Ea/R=0, n=0

Step Number 3: CL- + CL2+ --> CL + CL2

Forward Rate: Ap=5e-14, Ea/R=0 eV, n=0

Backwards Rate: General Rate, Ap=0 Ea/R=0, n=0

Step Number 4: CL2 --> 2CL

(Electron Induced Reaction, Energy Loss:0)

Forward Rate: Ap=5.52e-14, Ea/R=5.49 eV, n=1.66

Backwards Rate: General Rate, Ap=0 Ea/R=0, n=0

Step Number 5: CL- --> CL

(Electron Induced Reaction, Energy Loss:0)

Forward Rate: Ap=3.28e-14, Ea/R=5.37 eV, n=0

Backwards Rate: General Rate, Ap=0 Ea/R=0, n=0

Step Number 6: CL --> CL+

(Electron Induced Reaction, Energy Loss:0)

Forward Rate: Ap=3e-14, Ea/R=13.21 eV, n=0.559

Backwards Rate: General Rate, Ap=0 Ea/R=0, n=0

Step Number 7: CL+ + CL- --> 2CL

Forward Rate: Ap=5e-14, Ea/R=0 eV, n=0

Backwards Rate: General Rate, Ap=0 Ea/R=0, n=0

Step Number 8: CL2 --> CL+ + CL

(Electron Induced Reaction, Energy Loss:0)

Forward Rate: Ap=3.88e-15, Ea/R=15.5 eV, n=0

Backwards Rate: General Rate, Ap=0 Ea/R=0, n=0

Step Number 9: CL2 --> CL+ + CL-

(Electron Induced Reaction, Energy Loss:0)

Forward Rate: Ap=1.07e-15, Ea/R=12.37 eV, n=0

Backwards Rate: General Rate, Ap=0 Ea/R=0, n=0

8) Define the Surface Reactions

Select Model -> Models --> Sur. Reaction

Surface Reactions: ON

Surface Mass Transfer: Sticking Coefficient Method

Add a Mechanism (name it "Chamber") with 3 steps

Step Number 1: CL2+ --> CL2

Ap=1, Ea/R=0, n=0, Transferred Species=None

Step Number 2: CL+ --> CL

Ap=1, Ea/R=0, n=0, Transferred Species=None

Step Number 3: 2CL --> CL2

Ap=0.8, Ea/R=0, n=0, Transferred Species=None

Add a Mechanism (name it "Window") with 3 steps

Step Number 1: CL2+ --> CL2

Ap=1, Ea/R=0, n=0, Transferred Species=None

Step Number 2: CL+ --> CL

Ap=1, Ea/R=0, n=0, Transferred Species=None

Step Number 3: 2CL --> CL2

Ap=0.02, Ea/R=0, n=0, Transferred Species=None

Add a Mechanism (name it "Wafer") with 3 steps

Step Number 1: CL2+ --> CL2

Ap=1, Ea/R=0, n=0, Transferred Species=None

Step Number 2: CL+ --> CL

Ap=1, Ea/R=0, n=0, Transferred Species=None

Step Number 3: 2CL --> CL2

Ap=0.02, Ea/R=0, n=0, Transferred Species=None

9a) Change the Window/Chamber INTERFACE BC's to MAT_INTF (4)

Select Model --> Bound. Cond. --> Surface BC --> Location

In Domain 6 pick the Window/Chamber INTERFACEs (2) and change to MAT_INTF

In Domain 8 pick the Window/Chamber INTERFACE (1) and change to MAT_INTF

In Domain 10 pick the Window/Chamber INTERFACE (1) and change to MAT_INTF

9b) Setup the Boundary Condition Values

Select Model --> Bound. Cond. --> Surface BC --> Values

(need pic)

Pick the Cyan colored outer case walls (8)

Isothermal (U=0, V=0, T=300)

Electron Temperature: Fixed Gradient dTe/dn=0

Vector Magnetic Potential: Fixed Potential A(Real)=0, A(Imag)=0

Reaction: Off

Middle-Mouse to complete the set

Pick the Cyan colored outer chamber walls (12)

Isothermal (U=0, V=0, T=300)

Electron Temperature: Fixed Gradient dTe/dn=0

Vector Magnetic Potential: Fixed Potential A(Real)=0, A(Imag)=0

Reaction: Chamber

Middle-Mouse to complete the set

Pick the Cyan colored wafer wall (1)

Isothermal (U=0, V=0, T=300)

Electron Temperature: Fixed Gradient dTe/dn=0

Vector Magnetic Potential: Fixed Potential A(Real)=0, A(Imag)=0

Reaction: Chamber

Middle-Mouse to complete the set

Pick the Beige colored Chamber/Window Material Interfaces

in Domains 8 and 10 (2)

Set the Reaction to "Window"

Middle-Mouse to complete the set

Pick the Yellow colored Inlet (1)

Fixed Velocity, Normal Vn=23 m/s, P=0 Pa, T=300 K

Electron Temperature: Fixed Gradient dTe/dn=0

Vector Magnetic Potential: Fixed Potential A(Real)=0, A(Imag)=0

Mixture: Inlet

Middle-Mouse to complete the set

Pick the Green colored Outlet (1)

Fixed Pressure, U=0 m/s, V=0 m/s, P=0 Pa, T=300 K

Electron Temperature: Fixed Gradient dTe/dn=0

Vector Magnetic Potential: Fixed Potential A(Real)=0, A(Imag)=0

Mixture: Inlet

Middle-Mouse to complete the set

10) Setup the Coil Current

Select Model --> Bound. Cond. --> Coil Current

Pick each of the five coils

Source Type: AC Source, Input: Coil Current

Field Frequency 1.356e7 Hz, Coil Current 25 A

Middle-Mouse to complete the set

11) Activate Slip Wall Boundary Conditions

Select Model --> Bound. Cond. --> Global BC Settings

Activate Velocity Slip with Accomodation Coefficient 0.9317

12) Setup the Initial Conditions

Select Model --> Initial Cond. --> Initial Cond

Set Constant Values

Mixture=Initial, U=0.01, V=0.01, P(rel)=0, T=300 K, Electron Temp = 3 eV

Mag. Potential (Real)=0, Mag. Potential (Imag)=0

Mixture: Initial

12) Set the number of Solution Iterations

Select Solve --> Control --> Iterations --> Solution 3000

13) Define the Solution Relaxation Parameters

Select Solve --> Control --> Relaxation

Change the following:

Enthalpy: 0.2

Species Fractions:1e-5

Plasma: 0.01

Electromagnetics: 0.001

Density: 0.6

Pressure: 0.6

Temperature: 1e-9

14) Request Desired Output

Select Solve --> Output --> Printed --> Mass Flow Summary --> Global

Select Solve --> Output --> Graphics (add any desired scalars)

For now we must skip step 15 and run from the command line, so save the

DTF file as T3.DTF and go to the command line "CFD-ACEUAT -dtf T3.DTF"

Modify the DTF file to turn off the Enthalpy equation

and modify the linear relaxations for species

DTF -ud T3.DTF<T3.in

You should see the following

SOLVE_HEAT

Updating

Old values (2 elements): 1 0

New values (2 elements): 0 0

RELAXATIONS_CHEM2

Updating

Old values (5 elements): 1 1 1 1 1

New values (5 elements): 1 1 0.005 0.005 0.005

RELAX_ELECTRON_DENSITY

Updating

Old values (1 elements): 0.1

New values (1 elements): 0.1

RELAX_DRIFT

Updating

Old values (1 elements): 0

New values (1 elements): 0

15) Submit the Job

Select Solve --> Solution --> Submit --> Submit the run (OK)

The solution should show the following:

max electron temperature of 2.47 eV

max electron number density of 8.67e16 1/m3

max Cl- number density 2.33e17 1/m3

max Cl2+ number density 2.42e17 1/m3

max Cl+ number density 7.61e16 1/m3

max RF electric field |E|rf 2000 V/m

Electron Energy Loss 186 W

Electron Absorbed Energy 186 W

RESULTS: Postprocess results with CFD-VIEW

Slide1  Slide2    Slide3   Slide4   Slide5  Slide6  Slide7    Slide8  Slide9