1) Start CFD-GUI and read the grid

Select Model --> Grid --> Import Grid --> DTF and read T2.DTF

Answer "Yes" when asked if the 2D model is axisymmetric

2) Select the Problem Type Options

Select Model --> Problem Type --> Options

Activate Compressible Flow, Heat Transfer, Reaction, Plasma, Electromagnetics

3) Read Additional Species Database

Select Model --> Prop. --> Species --> Read Additional Species

read ions.SPECIES file

4) Setup the Inlet and Initial Mixtures

Select Model --> Prop. --> Mixture Defn.

Add two mixtures:

Inlet: (AR 0.54, O2 0.34, SIH4 0.12)

Initial: (AR 0.5999, AR+ 0.0001, O2 0.3, SIH4 0.1)

5) Define the Gas Properties

Select Model --> Prop. --> Gas

Density = Ideal Gas Law (Ref. Pressure = 1.33 Pa)

Use default values for all other gas properties

6) Define the Solid Properties

Select Model --> Prop. --> Solid

Copper:

Conductivity = 386 W/m-K

Specific Heat = 385 J/kg-K

Density = 8900 kg/m3

Air:

Conductivity = 0.0242 W/m-K

Specific Heat = 1000 J/kg-K

Density = 1.15 kg/m3

Use default values for all other solid properties

7) Define the Gas Phase / Electron Induced Reactions

Select Model --> Models --> Reaction

Set Number of Steps to 2, Rate Constants by: General Rate

Step Number 1: AR --> AR+ (Electron Induced Reaction, Energy Loss:0)

Forward Rate: Ap=1.2e-13 m^3/s, Ea/R=18.7 eV, n=0

Backwards Rate: General Rate, Ap=0 Ea/R=0, n=0

Step Number 2: SIH4 --> SIH2 + H2 (Electron Induced Reaction, Energy Loss:0)

Forward Rate: Ap=1.6e-14 m^3/s, Ea/R=10.64 eV, n=-1

Backwards Rate: General Rate, Ap=0 Ea/R=0, n=0

8) Define the Surface Reactions

Select Model -> Models --> Sur. Reaction

Surface Reactions: ON

Surface Mass Transfer: Sticking Coefficient Method

Add a Mechanism (name it "SurfReact") with 3 steps

Step Number 1: AR+ --> AR

Ap=10, Ea/R=0, n=0, Transferred Species=None

Step Number 2: SIH4 + O2 --> 2 H2(g) + SIO2(s)

Ap=0.3, Ea/R=0, n=0, Transferred Species=SIO2, Density=2700 kg/m3

Step Number 3: SIH2 + O2 --> H2(g) + SIO2(s)

Ap=1, Ea/R=0, n=0, Transferred Species=SIO2, Density=2700 kg/m3

9) Setup the Boundary Conditions

Select Model --> Bound. Cond. --> Surface BC --> Values

(need pic)

Pick the Cyan colored outer case walls (3)

Isothermal (U=0, V=0, T=300)

Electron Temperature: Fixed Gradient dTe/dn=0

Vector Magnetic Potential: Fixed Potential A(Real)=0, A(Imag)=0

Reaction: Off

Middle-Mouse to complete the set

Pick the Cyan colored chamber walls (6)

Isothermal (U=0, V=0, T=300)

Electron Temperature: Fixed Gradient dTe/dn=0

Vector Magnetic Potential: Fixed Potential A(Real)=0, A(Imag)=0

Reaction: SurfReact

Middle-Mouse to complete the set

Pick the Beige colored Material Interface (1)

Set the Reaction to SurfReact

Middle-Mouse to complete the set

Pick the Yellow colored Inlet (1)

Fixed Velocity, Normal Vn=290 m/s, P=1.7 Pa, T=300 K

Electron Temperature: Fixed Gradient dTe/dn=0

Vector Magnetic Potential: Fixed Potential A(Real)=0, A(Imag)=0

Mixture: Inlet

Middle-Mouse to complete the set

Pick the Green colored Outlet (1)

Fixed Pressure, U=0 m/s, V=0 m/s, P=0 Pa, T=300 K

Electron Temperature: Fixed Gradient dTe/dn=0

Vector Magnetic Potential: Fixed Potential A(Real)=0, A(Imag)=0

Mixture: Inlet

Middle-Mouse to complete the set

10) Setup the Coil Current

Select Model --> Bound. Cond. --> Coil Current

Pick each of the three coils

Source Type: AC Source, Input: Coil Current

Field Frequency 1.356e7 Hz, Coil Current 15 A

11) Setup the Initial Conditions

Select Model --> Initial Cond. --> Initial Cond

Set Constant Values

Mixture=Initial, U=0.01, V=0.01, P(rel)=0, T=300 K, Electron Temp = 3.5 eV

Mag. Potential (Real)=0, Mag. Potential (Imag)=0

12) Set the number of Solution Iterations

Select Solve --> Control --> Iterations --> Solution 1000

13) Define the Solution Relaxation Parameters

Select Solve --> Control --> Relaxation

Change the following:

Enthalpy: 0.001

Species Fractions:0.1

Plasma: 0.01

Electromagnetics: 0.1

Density: 1.0

Pressure: 1.0

Temperature: 0.1

14) Request Desired Output

Select Solve --> Output --> Printed --> Mass Flow Summary --> Global

Select Solve --> Output --> Graphics (add any desired scalars)

15) Submit the Job (must have CFD-ACEUA V6.0 or greater)

Select Solve --> Solution --> Submit --> Submit the run (OK)

The solution should show the following:

max electron temperature of 4.57 eV

max electron number density of 4.37e16 1/m3

max Temperature of 777 K

max AR+ number density of 4.37e16 1/m3

max RF electric field |E|rf of 798 V/m

Electron Energy Loss 88 W

Electron Absorbed Energy 88 W