1) Start CFD-GUI and read the grid
Select Model --> Grid --> Import Grid --> DTF and read T2.DTF
Answer "Yes" when asked if the 2D model is axisymmetric
2) Select the Problem Type Options
Select Model --> Problem Type --> Options
Activate Compressible Flow, Heat Transfer, Reaction, Plasma, Electromagnetics
3) Read Additional Species Database
Select Model --> Prop. --> Species --> Read Additional Species
read ions.SPECIES file
4) Setup the Inlet and Initial Mixtures
Select Model --> Prop. --> Mixture Defn.
Add two mixtures:
Inlet: (AR 0.54, O2 0.34, SIH4 0.12)
Initial: (AR 0.5999, AR+ 0.0001, O2 0.3, SIH4 0.1)
5) Define the Gas Properties
Select Model --> Prop. --> Gas
Density = Ideal Gas Law (Ref. Pressure = 1.33 Pa)
Use default values for all other gas properties
6) Define the Solid Properties
Select Model --> Prop. --> Solid
Copper:
Conductivity = 386 W/m-K
Specific Heat = 385 J/kg-K
Density = 8900 kg/m3
Air:
Conductivity = 0.0242 W/m-K
Specific Heat = 1000 J/kg-K
Density = 1.15 kg/m3
Use default values for all other solid properties
7) Define the Gas Phase / Electron Induced Reactions
Select Model --> Models --> Reaction
Set Number of Steps to 2, Rate Constants by: General Rate
Step Number 1: AR --> AR+ (Electron Induced Reaction, Energy Loss:0)
Forward Rate: Ap=1.2e-13 m^3/s, Ea/R=18.7 eV, n=0
Backwards Rate: General Rate, Ap=0 Ea/R=0, n=0
Step Number 2: SIH4 --> SIH2 + H2 (Electron Induced Reaction, Energy Loss:0)
Forward Rate: Ap=1.6e-14 m^3/s, Ea/R=10.64 eV, n=-1
Backwards Rate: General Rate, Ap=0 Ea/R=0, n=0
8) Define the Surface Reactions
Select Model -> Models --> Sur. Reaction
Surface Reactions: ON
Surface Mass Transfer: Sticking Coefficient Method
Add a Mechanism (name it "SurfReact") with 3 steps
Step Number 1: AR+ --> AR
Ap=10, Ea/R=0, n=0, Transferred Species=None
Step Number 2: SIH4 + O2 --> 2 H2(g) + SIO2(s)
Ap=0.3, Ea/R=0, n=0, Transferred Species=SIO2, Density=2700 kg/m3
Step Number 3: SIH2 + O2 --> H2(g) + SIO2(s)
Ap=1, Ea/R=0, n=0, Transferred Species=SIO2, Density=2700 kg/m3
9) Setup the Boundary Conditions
Select Model --> Bound. Cond. --> Surface BC --> Values
(need pic)
Pick the Cyan colored outer case walls (3)
Isothermal (U=0, V=0, T=300)
Electron Temperature: Fixed Gradient dTe/dn=0
Vector Magnetic Potential: Fixed Potential A(Real)=0, A(Imag)=0
Reaction: Off
Middle-Mouse to complete the set
Pick the Cyan colored chamber walls (6)
Isothermal (U=0, V=0, T=300)
Electron Temperature: Fixed Gradient dTe/dn=0
Vector Magnetic Potential: Fixed Potential A(Real)=0, A(Imag)=0
Reaction: SurfReact
Middle-Mouse to complete the set
Pick the Beige colored Material Interface (1)
Set the Reaction to SurfReact
Middle-Mouse to complete the set
Pick the Yellow colored Inlet (1)
Fixed Velocity, Normal Vn=290 m/s, P=1.7 Pa, T=300 K
Electron Temperature: Fixed Gradient dTe/dn=0
Vector Magnetic Potential: Fixed Potential A(Real)=0, A(Imag)=0
Mixture: Inlet
Middle-Mouse to complete the set
Pick the Green colored Outlet (1)
Fixed Pressure, U=0 m/s, V=0 m/s, P=0 Pa, T=300 K
Electron Temperature: Fixed Gradient dTe/dn=0
Vector Magnetic Potential: Fixed Potential A(Real)=0, A(Imag)=0
Mixture: Inlet
Middle-Mouse to complete the set
10) Setup the Coil Current
Select Model --> Bound. Cond. --> Coil Current
Pick each of the three coils
Source Type: AC Source, Input: Coil Current
Field Frequency 1.356e7 Hz, Coil Current 15 A
11) Setup the Initial Conditions
Select Model --> Initial Cond. --> Initial Cond
Set Constant Values
Mixture=Initial, U=0.01, V=0.01, P(rel)=0, T=300 K, Electron Temp = 3.5 eV
Mag. Potential (Real)=0, Mag. Potential (Imag)=0
12) Set the number of Solution Iterations
Select Solve --> Control --> Iterations --> Solution 1000
13) Define the Solution Relaxation Parameters
Select Solve --> Control --> Relaxation
Change the following:
Enthalpy: 0.001
Species Fractions:0.1
Plasma: 0.01
Electromagnetics: 0.1
Density: 1.0
Pressure: 1.0
Temperature: 0.1
14) Request Desired Output
Select Solve --> Output --> Printed --> Mass Flow Summary --> Global
Select Solve --> Output --> Graphics (add any desired scalars)
15) Submit the Job (must have CFD-ACEUA V6.0 or greater)
Select Solve --> Solution --> Submit --> Submit the run (OK)
The solution should show the following:
max electron temperature of 4.57 eV
max electron number density of 4.37e16 1/m3
max Temperature of 777 K
max AR+ number density of 4.37e16 1/m3
max RF electric field |E|rf of 798 V/m
Electron Energy Loss 88 W
Electron Absorbed Energy 88 W